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Abstract
Around 15 years after the invention of fMRI, Func-
tional Connectivity, FC, in the human brain has 
emerged as a major issue in neuroimaging studies. 
The reason is that the brain regions are a complex 
network of functional communication that plays a 
key role in cognitive processes. FC is defined as 
the temporal correlation of neural activation across 
different regions of the brain. Functional connectiv-
ity of a single subject seems to be affected by their 
situation. The results of the other studies demon-
strate that healthy brain function shows rich dynam-
ics over the course of time. So it may be a good 
idea to investigate the FC network as a summary 
of repeatedly measured fMRI sessions over more 
than one time point. Few studies have been done 
on the coordination of neural activity over longitu-
dinal sessions. This study evaluates the FC cross-
subject averaging of a single individual repeatedly 
measured over 16 weeks using the My Connec-
tome study. Resting state fMRI data were acquired 
in some longitudinal sessions. A variance based lin-
ear model, proposed by Fiecas et al. was employed 
to conduct statistical inference on FC patterns of a 
single human averaged across time. This model es-
timates the autocorrelation structure in a session-
specific manner, and estimates the variance due to 
the heterogeneity across sessions.
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Introduction

Resting state fMRI, called rs-fMRI, is a method of func-
tional magnetic resonance imaging,  of fMRI, which is 
used to evaluate brain activation that occurs when a sub-
ject is not performing a typical task (1). Brain activity is 
observed through changes in Blood Oxygen Level Depen-
dent, BOLD, signals in the brains’ voxels. Brain activity is 
present even in the absence of an external task, so BOLD 
signals will change in brain regions during a resting state.

One of the important tasks, which has received interest in 
recent years, is detecting of brain areas’ connectivity. In 
general, connectivity investigates how brain regions inter-
act with each other (2). Functional connectivity, FC, identi-
fies regions of the brain showing similar temporal charac-
teristics. In other words, it can be defined as the temporal 
correlation between spatially different brain regions. Usu-
ally, functional connectivity is determined during the rest-
ing state fMRI and it is analyzed in terms of correlation and 
spatial clustering based on temporal similarities in BOLD 
signals (3). 

In fact, the statistical inference for functional connectivity 
are based on statistical measures of dependency among 
brain areas. In this way, some methods are based on tem-
poral correlations between Regions of Interest, ROIs, or 
between a ‘seed’ region and other voxels throughout the 
brain (4). The other common approaches are clustering 
and multivariate statistical methods. Clustering approach-
es partition the brain into regions that exhibit similar BOLD 
signal characteristics over time. Multivariate methods are 
used for dimension reduction, such as Principal Com-
ponents Analysis, PCA, and Independent Components 
Analysis, ICA. These methods determine spatial patterns 
that include most of the variability in the BOLD time-series 
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(5–7). In addition, there are some specific approaches 
such as Graphical Lasso, GLasso, and Bayesian non-
parametric models (1,8,9). 

It is a fact that functional connectivity changes over time 
(10). Therefore, it may be a good idea that the functional 
connectivity is considered during some sessions. So we 
investigated the FC network as a summary of repeatedly 
measured fMRI sessions over more than one time point, 
by averaging of a single individual repeatedly measured 
over 16 weeks using the My Connectome study (11).

Recently, Fiecas et al. have presented a variance-based 
method for comparing the FC networks between a group 
of patients and a group of healthy controls in a multi-
subject resting-state fMRI data set (12). They introduced 
a variance components framework for modeling the FC 
networks that accounts for the autocorrelation inherent 
in the ROI time series of each subject and for subject 
heterogeneity. We have used their approach, by replacing 
the subjects with repeated sessions. Therefore, we have 
applied their model and estimated a functional connectivity 
pattern for a single subject based on repeated resting state 
fMRI acquired across some weeks.

Material and Methods

1. Statistical Inference
To perform statistical inference on the FC network, we used 
the proposed model by Fiecas et al. (12). We applied their 
approach by considering sessions instead of subjects. In 
this way, the model accounts for the temporal correlation in 
the time series within the subject, the covariance between 
the different pairs of ROIs within the subject, and the 
variability due to the sampling across sessions. Suppose 
data include p ROIs, across N sessions. So the number 
of paired ROIs are q=p(p-1)/2 for each session. Then the 
model is in the following form

(1)

Where the Y=(r_11,…,r_q1,r_12,…,r_q2,…,r_1N,…,r_qN)  
is the vector of sample correlation coefficients stacked 
vertically across the sessions. The and Ψ are vectors 
with dimension Nq*1.

The q elements of vector β are the parameters of interest 
that capture the true FC. The model has two error terms. 
The first one is used to model variance and covariance 
related to the temporal autocorrelation in the ROI time 
series within the subject. The second one represents the 
amount of variability that can be attributed due to sampling 
across weeks. 

Parameters estimated were obtained using the approach 
detailed in Fiecas et al. (12).

2. Database
We used data from the My Connectome study that consists 
of 89 sessions of resting state fMRI data on a single healthy 
human. The My Connectome project has characterized 
how the brain of one person changes over the course of 
more than one year. This data was obtained from the Open 
fMRI database. Its accession number is ds000031. We 
considered resting state fMRI data repeatedly measured 
over 16 weeks. The rs-fMRI acquiring was performed 
in 89 sessions throughout the data collection period in 
the production phase, using a multi-band EPI sequence 
(TR=1.16ms, TE=30ms), voxel size=2.4*2.4*2mm. Starting 
with session 27 (December 12 2012). The size of images 
was 2.4*2.4*2.4. Image pre-processing was carried out 
with the FMRIB Software Library, FSL software (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki) (13). Resting state processing 
included motion correction (14), removal of non-brain 
structures (15), spatial smoothing (5 mm FWHM), and 
high-pass temporal filtering.

The goal of this study was to provide comprehensive 
patterns of FC cross-session averaging. We specify the 
ROIs based on Broodman atlas including 42 ROI. Time 
courses for each ROI were obtained by averaging across 
all voxels within the ROI. Three ROIs were discarded 
from the analysis, because their time series had not been 
reached. Then we considered all the pairwise correlations 
between the ROI time series, 741 pairwise.

Table 1: A list of the ROIs and their numbers in analyzing process.
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Results

An individual subject FC was generated using data from 16 resting state sessions for 39 ROIs following the procedure 
described in the previous section. A list of the 39 ROIs with their abbreviations is presented in Table 1. In Figure 1, we 
show the beta parameters that capture true FC estimated based on longitudinal sessions, and also the beta parameters 
for the FC networks in 16 sessions, individually. The overall betas have more variance related to the betas for each of 
the 16 sessions. 

In addition, Figure 1 includes the correlations between ROIs averaged over the longitudinal sessions and the correlations 
among ROI for all 16 sessions. The image shows that the correlations between paired ROIs have different variation 
during the sessions.

Figure 1: Up: The estimated beta over sessions; Down: The correlations between ROI pairs over sessions.

 

Also, we have shown the beta parameters that capture true FC estimate based on longitudinal session and the beta 
parameters for session 1 and vice versa in Figure 2, in the upper triangle and lower triangle, respectively. In this image, 
we can see the difference between the estimated betas related to each of the ROI pairs in detail. FC networks for 
session’s numbers 1, 8 and 16 also drawn vice versa in the overall FC network in Figure 2. These Results show that the 
FC networks are not static across the sessions.
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Figure 2. Upper triangle: the estimated beta totally. Lower triangle: the estimated beta for Session 1

Figure 3. (a) The estimated betas for Session 1; (b) The estimated betas for Session 8; (c) The estimated betas 
for Session 16.
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Discussion

The human brain is a network that consists of spatial 
regions, which are functionally linked. These regions 
share information with each other continually (16). Using 
the resting-state fMRI, we can explore the functional 
connections of the brain regions. Functional connectivity of 
rs-fMRI data is an important issue with an increasing trend 
of innovations in recent years.  An important limitation 
of most rs-fMRI studies in healthy adults is reliance on 
functional connectivity indices calculated from an entire 
scan session (17). In this way, important information about 
within-scan temporal changes in functional connectivity 
may be lost.

Therefore, the present study aimed to determine the 
functional connectivity in a single healthy human using 
his repeated rs-fMRI data. The current study reveals that 
whole brain network properties varied within a single 
resting-state scan session.

Bharat et al have associated the variations of functional 
connectivity with the intrinsic activities of resting-state 
networks during a single resting state scan by comparing 
functional connectivity differences between the situation 
when a network had higher and lower intrinsic activities 
(18). Allen et al. have described an approach to assess 
whole-brain FC dynamics based on spatial independent 
component analysis, sliding time window correlation, 
and k-means clustering of windowed correlation matrices 
(19). There are few good review articles about dynamic 
FC. Hutchison et al have reviewed recent findings, 
methodological considerations, neural and behavioral 
correlates, and some directions in the emerging field of 
dynamic FC studies (10). In addition, Ioannides review 
FC results from a variety of studies, which suggest that 
an adequate description of brain organization requires a 
hierarchy of networks rather than a single one (20). Viviano 
et al explore the associations between dynamic functional 
connectivity and age differences, metabolic risk, and 
cognitive performance in healthy adults (21). Hutchison et 
al showed that the Resting-state networks have Dynamic 
FC in awake humans and anesthetized macaques. Their 
results illustrated that resting-state functional connectivity 
is not static (22). Marusak et al have explored the Dynamic 
FC of neurocognitive networks in children in a sample of 
146 youth from varied sociodemographic backgrounds. 
They applied the Independent component analysis, sliding 
time window correlation, and k-means clustering to rs-fMRI 
data. Their results showed six dynamic FC networks that 
re-occur over time (23). Bhattacharya et al have proposed 
a nonparametric Bayesian approach to model effective 
connectivity assuming a dynamic non-stationary neuronal 
system (24).

However a large number of ROIs is possible for the 
variance model, but we needed to make modifications to 
the proposed method to accommodate the larger number 
of ROIs. The reason was that the number of parameters 
in our model were very large compared with respect to 
the number of ROIs. To solve this problem we ignored the 

covariance terms in the between-subject covariance matrix. 
Because of a small number of sessions, we considered 
only the scaled identity structure for the between-subject 
covariance matrix, since by this structure the model has a 
small number of parameters. Using larger sample sizes, 
one can consider structures that are more complex.

References

1. Zhang L, Guindani M, Vannucci M. Bayesian models 
for functional magnetic resonance imaging data analysis. 
Wiley Interdisciplinary Reviews: Computational Statistics. 
2015 Jan 1;7(1):21-41. 
2. Friston KJ. Functional and effective connectivity in 
neuroimaging: a synthesis. Hum Brain Mapp 1994, 2:56–
78.
3. Friston KJ. Functional and effective connectivity: a 
review. Brain Connectivity 2011, 10:13–36. 
4.  Zalesky A, Fornito A, Bullmore E. On the use of correlation 
as a measure of network connectivity. Neuroimage 2012, 
60:2096–2106. 
5. Andersen AH, Gash DM, Avison MJ. Principal component 
analysis of the dynamic response measured by fMRI: 
a generalized linear systems framework. Magn Reson 
Imaging 1999, 170:795–815. 
6. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method 
for making group inferences from functional MRI data 
using independent component analysis. Hum Brain Mapp 
2001, 140:140–151. 
7. McKeown M, Makeig S, Brown G, Jung T, Kindermann 
S, Bell A, Sejnowski T. Analysis of fMRI data by blind 
separation into independent spatial components. Hum 
Brain Mapp 1998, 6:160–188. 
8. Cribben I, Haraldsdottir R, Atlas LY, Wager TD, Lindquist 
MA. Dynamic connectivity regression: determining state-
related changes in brain connectivity. Neuroimage 2012, 
61:907–920. 
9. Varoquaux G, Gramfort A, Poline JB, Thirion B, Zemel 
R, Shawe-Taylor J. Brain covariance selection: better 
individual functional connectivity models using population 
prior. In: Zemel R, Shawe-Taylor J, eds. Advances in 
Neural Information Processing System. 
10. Hutchison RM, Womelsdorf T, Allen EA, Bandettini 
PA, Calhoun VD, Corbetta M, et al. Dynamic functional 
connectivity: Promise, issues, and interpretations. 
Neuroimage [Internet]. Elsevier Inc.; 2013;80:360–
78. Available from: http://dx.doi.org/10.1016/
j.neuroimage.2013.05.079
11. Poldrack RA, Laumann TO, Koyejo O, Gregory B, 
Hover A, Chen MY, Gorgolewski KJ, Luci J, Joo SJ, Boyd 
RL, Hunicke-Smith S. Long-term neural and physiological 
phenotyping of a single human. Nature communications. 
2015 Dec 9;6:8885. 
12. Fiecas M, Cribben I, Bahktiari R, Cummine J. A 
variance components model for statistical inference on 
functional connectivity networks. Neuroimage [Internet]. 
Elsevier; 2017;149:256–66. Available from: http://dx.doi.
org/10.1016/j.neuroimage.2017.01.051
13. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, 
Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, 
Drobnjak I, Flitney DE, Niazy RK. Advances in functional 

RE VIE WS



MIDDLE EAST JOURNAL OF FAMILY MEDICINE  •  VOLUME 7 , ISSUE 10 153WORLD FAMILY MEDICINE/MIDDLE EAST JOURNAL OF FAMILY MEDICINE VOLUME 15 ISSUE 8, OCTOBER 2017

and structural MR image analysis and implementation as 
FSL. Neuroimage. 2004 Dec 31;23:S208-19. 
14. Jenkinson M, Bannister P, Brady M, Smith S. Improved 
optimization for the robust and accurate linear registration 
and motion correction of brain images. Neuroimage. 2002 
Oct 31;17(2):825-41. 
15. Smith SM. Fast robust automated brain extraction. 
Human brain mapping. 2002 Nov 1;17(3):143-55. 
16. van den Heuvel MP, Hulshoff Pol HE. Exploring the 
brain network: A review on resting-state fMRI functional 
connectivity. Eur Neuropsychopharmacol [Internet]. 
Elsevier B.V.; 2010;20(8):519–34. Available from: http://
dx.doi.org/10.1016/j.euroneuro.2010.03.008
17. Chang C, Glover GH. Time–frequency dynamics 
of resting-state brain connectivity measured with fMRI. 
Neuroimage. 2010 Mar 31;50(1):81-98. 
18. Di X, Biswal BB. Dynamic brain functional connectivity 
modulated by resting-state networks. Brain Struct Funct. 
2013;220(1):37–46. 
19. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, 
Calhoun VD. Tracking whole-brain connectivity dynamics 
in the resting state. Cereb Cortex. 2014;24(3):663–76. 
20. Ioannides AA. Dynamic functional connectivity. Curr 
Opin Neurobiol. 2007;17(2):161–70. 
21. Viviano RP, Raz N, Yuan P, Damoiseaux JS. 
Associations between dynamic functional connectivity and 
age, metabolic risk, and cognitive performance. Neurobiol 
Aging [Internet]. Elsevier Inc.; 2017; Available from: http://
linkinghub.elsevier.com/retrieve/pii/S0197458017302580
22. Hutchison RM, Womelsdorf T, Gati JS, Everling 
S, Menon RS. Resting-state networks show dynamic 
functional connectivity in awake humans and anesthetized 
macaques. Hum Brain Mapp. 2013;34(9):2154–77. 
23. Marusak HA, Calhoun VD, Brown S, Crespo LM, Sala-
Hamrick K, Gotlib IH, et al. Dynamic functional connectivity 
of neurocognitive networks in children. Hum Brain Mapp. 
2017;38(1):97–108. 
24. Bhattacharya S, Maitra R. A nonstationary nonparametric 
Bayesian approach to dynamically modeling effective 
connectivity in functional magnetic resonance imaging 
experiments. Ann Appl Stat. 2011;5(2 B):1183–206. 

RE VIE WS


