Genetics and Risk Factors of Dementia

A Abyad

Correspondence

A. Abyad, MD, MPH, MBA, DBA, AGSF, AFCHSE

Consultant, Internal Medicine and Geriatric, Dar Al Shifa Hospital, Kuwait Chairman, Middle-East Academy for Medicine of Aging.

President, Middle East & North Africa Association on Aging & Alzheimer's

Coordinator, Middle-East Primary Care Research Network

Coordinator, Middle-East Network on Aging

Email: aabyad@cyberia.net.lb

Received: October 2025. Accepted: November 2025; Published: November/December 2025.

Citation: Abyad A. Genetics and Risk Factors of Dementia. World Family Medicine. November/December 2025; 23(8): 31 - 54. DOI: 10.5742/MEWFM.2025.805257958

Abstract

Dementia is one of the most significant public health challenges of the 21st century, affecting older adults disproportionately and imposing profound consequences on individuals, families, healthcare systems, and society. Although increasing age is the strongest risk factor, advancing scientific knowledge has revealed dementia to be a disorder driven by multifactorial and modifiable determinants rather than a simple consequence of aging. A better understanding of these risk pathways enables clinicians to implement prevention-focused, person-centered care and population-level strategies, especially in regions undergoing rapid demographic transition such as the Middle East and North Africa (MENA).

Dementia is not a single disease but a clinical syndrome characterized by progressive decline in cognition, function, and behaviour. Alzheimer's disease (AD) remains the most common etiology, followed by vascular dementia, dementia with Lewy bodies, and frontotemporal dementia. Modern geriatric medicine conceptualizes dementia as a bio-psychosocial condition, integrating molecular pathology, vascular burden, metabolic dysfunction, psychosocial stressors, and environmental influences across the lifespan.

Keywords: dementia, risk factors, genetics

Introduction: The Interplay of Genes and Lifestyle

Dementia, a syndrome characterized by a decline in cognitive function severe enough to interfere with daily life, is not an inevitable consequence of aging. Rather, it is the result of a complex and dynamic interplay between our genetic blueprint and the lives we lead (Livingston et al., 2020). For decades, the quest to understand dementia has traversed two parallel paths: one exploring the intricate code of our DNA, and the other investigating the environmental and lifestyle factors we encounter from birth to old age. Today, these paths have converged, revealing that our risk for developing dementia is not written solely in our genes but is profoundly shaped by a lifetime of choices, experiences, and exposures.

This chapter delves into the multifaceted landscape of genetic and risk factors for dementia. We begin by exploring the fundamental genetic architecture, distinguishing between rare genes that virtually guarantee disease and common gene variants that merely increase susceptibility. We will then clarify the often-misunderstood concepts of familial and sporadic dementia. The chapter's core will focus on the empowering science of modifiable risk factors - the aspects of our physical and mental health that we can influence to build resilience against cognitive decline (Livingston et al., 2020). Finally, we will examine broader environmental and lifestyle influences, synthesizing this knowledge into the unifying concept of cognitive reserve (Stern, 2012). By the end of this chapter, the reader will appreciate that while we cannot change our genes, we have significant agency in modulating our risk for dementia through informed, proactive lifestyle decisions.

This reviews:

- · Genetic architecture and heritable risk factors
- Distinction between familial and sporadic dementia
- Vascular, metabolic, and lifestyle-based risk factors
- Environmental and psychosocial determinants
- Biomarkers and the evolving role of precision medicine
- Regional risks and public health implications in the MENA region
- Clinical screening pathways in primary and geriatric care

The objective is to provide geriatric clinicians with a comprehensive and pragmatic framework for identifying risk, counseling patients, and implementing early-intervention and prevention-focused strategies.

Epidemiological Perspective

Worldwide dementia prevalence is rising due to global population aging and increased survival rates into advanced age. According to the WHO, over 55 million people currently live with dementia, with 10 million new cases annually. Prevalence doubles approximately every five years after age 65, with nearly one-third of adults over 85 affected.

Changing Understanding of Dementia Risk

Historically regarded as inevitable with aging, dementia is now recognized as partially preventable. Landmark longitudinal studies and meta-analyses estimate that up to 40% of dementia cases may be delayed or prevented by addressing modifiable risk factors.

Key concepts shaping modern epidemiology include:

- Life-course model of brain health cognitive reserve shaped early in life
- Vascular-metabolic hypothesis brain aging mirrors cardiovascular health
- Neuro-inflammation and oxidative stress amplified by chronic disease
- Social determinants of health education, occupation, social engagement

With elderly populations expanding rapidly in the Gulf region, Levant, and North Africa, MENA nations face a projected 125% increase in dementia cases by 2050, making early-risk identification and prevention a regional healthcare priority.

The Genetic Blueprint: Predispositions and Deterministic Genes

Genetics provides the foundational code for all biological processes, including those that maintain brain health. In the context of dementia, genetic influences can be broadly categorized into two groups: risk genes and deterministic genes (National Institute on Aging, 2023). Understanding this distinction is crucial for accurate risk assessment, counseling, and research (Table 1).

- 1. Risk Genes (Genetic Predispositions): These are gene variants that increase an individual's likelihood of developing a disease but do not guarantee it. They are common in the general population. Having one or even two copies of a risk gene elevates risk, but other factors—such as other genes, lifestyle, and environment—play a decisive role in whether the disease manifests. The most prominent example in Alzheimer's disease is the APOE gene.
- 2. Deterministic Genes (Autosomal Dominant Mutations): These are much rarer, inherited mutations in specific genes that directly cause a disease. If a parent carries a deterministic gene, each child has a 50% chance of inheriting it. Virtually everyone who inherits such a mutation will develop the disease, often at a younger age (early-onset, before 65). These are primarily linked to familial forms of Alzheimer's disease and some forms of Frontotemporal dementia (Bateman et al., 2011).

Table 1. Genetic Classification of Dementia

Category	Description	Examples	Clinical Implication
Risk Genes	Increase the	APOE-e4,	Guide lifestyle
(Predispositional)	likelihood of disease but are not causative.	TREM2, ABCA7	interventions and risk counseling.
Deterministic Genes	Directly cause	APP, PSEN1,	Indicate early-onset
(Causative)	disease with	PSEN2, MAPT,	familial dementia;
	autosomal	GRN, C9orf72	require genetic
	dominant		counseling.
	inheritance.		

The following sections will explore these genetic factors in detail, beginning with the most significant genetic risk factor for late-onset Alzheimer's disease.

3.1 Deep Dive: The APOE-e4 Allele and Alzheimer's Disease

The Apolipoprotein E (APOE) gene, located on chromosome 19, is instrumental in lipid metabolism and neuronal repair (Liu, Kanekiyo, Xu, & Bu, 2013). It comes in three common forms, or alleles: e2, e3, and e4 (Table 2).

- APOE-e3: This is the most common allele and is considered neutral in terms of Alzheimer's risk.
- APOE-e2: This relatively rare allele appears to have a protective effect, reducing the risk of developing Alzheimer's.
- APOE-e4: This allele is the strongest known genetic risk factor for late-onset sporadic Alzheimer's disease.

How APOE-e4 Influences Risk:

- Dose-Dependent Effect: Risk increases with the number of e4 alleles (Liu et al., 2013).
 - o One copy of e4 (approximately 25% of the population): Risk is increased 2- to 3-fold.
 - o **Two copies of e4 (approximately 2-3% of the population):** Risk is increased 8- to 12-fold, and the age of onset is typically younger.

Table 2. APOE Genotype and Relative Alzheimer's Risk

Genotype	Population Frequency	Relative Risk	Clinical Notes
ε2/ε3	~10%	Protective	May reduce amyloid accumulation.
ε3/ε3	~60%	Baseline	Most common, neutral effect.
ε3/ε4	~25%	2–3× increased risk	Earlier onset possible.
ε4/ε4	~2–3%	8-12× increased risk	Strongest known genetic risk factor.

- **Biological Mechanisms:** The e4 allele is believed to contribute to Alzheimer's pathology through several mechanisms (Liu et al., 2013):
- **1. Amyloid-Beta Plaque Accumulation:** APOE protein is involved in clearing amyloid-beta peptides from the brain. The APOE-e4 isoform is less efficient at this clearance, leading to increased plaque deposition.
- **2. Tau Tangles:** It may also promote the hyperphosphorylation of tau protein, leading to the formation of neurofibrillary tangles.
- **3. Neuronal Inflammation and Dysfunction:** APOE-e4 is associated with increased neuroinflammation and impaired synaptic repair and lipid transport.

It is critical to emphasize that APOE-e4 is a risk gene, not a deterministic one. Many people with one or even two e4 alleles never develop Alzheimer's, while many people with the disease have no e4 alleles. This highlights the essential role of non-genetic factors.

3.2 Early-Onset Familial Alzheimer's Disease

A minority of dementia cases follow autosomal dominant inheritance with mutations in:

Table 3. Autosomal dominant inheritance

Gene	Function
APP	Amyloid precursor protein cleavage
PSEN1	γ-secretase component
PSEN2	γ-secretase component

These mutations cause overproduction of amyloid-β42, resulting in early onset (30–60 years) and rapid progression.

Red flags for genetic forms:

- Onset <65 years
- ≥2 affected first-degree relatives
- Rapid decline or atypical features

3.3 Other Neurodegenerative Gene Associations

Table 4. Other gene association

Disorder	Genes	Key Pathology
Frontotemporal dementia	MAPT, GRN, C9orf72	Tau or TDP-43 pathology
Lewy body dementia	GBA, SNCA	α-synuclein deposition
Vascular dementia (CADASIL)	NОТСН3	Small-vessel arteriopathy

Genetic testing is considered in geriatric practice when clinical features strongly suggest hereditary disease. Routine testing of older adults without red-flag features is **not recommended**.

3.4 Beyond APOE: Other Genetic Risk Factors

While APOE-e4 is the most significant player, genome-wide association studies (GWAS) have identified dozens of other genetic loci that contribute to the risk of Alzheimer's disease and other dementias (Kunkle et al., 2019). These genes often have small individual effects but can act in concert to significantly influence overall risk and are involved in various biological pathways.

Key Pathways and Example Genes:

- **Immune Response and Inflammation:** The brain's immune cells, microglia, play a key role in Alzheimer's pathology. Genes like TREM2 (Triggering Receptor Expressed on Myeloid cells 2) are critical for microglial function. Certain variants of TREM2 significantly increase risk, potentially by impairing the brain's ability to clear amyloid plaques and manage inflammation (Ulland & Colonna, 2018).
- **Lipid Metabolism and Endocytosis**: Genes involved in processing fats and cellular membrane trafficking are also implicated. Examples include ABCA7 (which helps transport cholesterol) and PICALM (involved in synaptic vesicle formation and amyloid precursor protein processing). Dysfunction in these processes can disrupt neuronal communication and plague clearance (Kunkle et al., 2019).
- **Tau Pathology:** While most strong genetic links are with amyloid, some genes are more directly associated with tau pathology, a hallmark of several dementias. The MAPT gene, which codes for the tau protein itself, is a key locus for Frontotemporal dementia (Strang et al., 2019).
- Vascular Dementia Genetics: Risk for vascular dementia is heavily influenced by genes that affect cardiovascular health, such as those involved in hypertension (e.g., ACE), cholesterol metabolism, and diabetes. The interplay between these and Alzheimer's genes is a critical area of research (Raz et al., 2016). The identification of these multiple risk genes underscores that Alzheimer's and other dementias are polygenic disorders, resulting from the combined effect of many genetic variants.

3.5 Familial vs. Sporadic Dementia

Dementia can broadly be classified into familial (inherited) and sporadic forms. Understanding this distinction is critical for geriatric clinicians who frequently field questions regarding heritability and screening among older adults.

Sporadic Dementia

Sporadic dementia comprises 90–95% of cases. While genetic predisposition plays a role (e.g., APOE-ε4), sporadic dementia arises from interacting biological and lifestyle factors across the lifespan.

- **Definition:** This is the most common form of dementia, accounting for over 90% of all cases, particularly Late-Onset Alzheimer's Disease (LOAD). "Sporadic" means the disease occurs without a clear, inherited pattern in the family.
- **Genetic Role:** Sporadic dementia is not "non-genetic." It involves a complex combination of genetic risk factors (like APOE-e4 and others) and non-genetic factors (lifestyle, environment, age). An individual may have a higher genetic risk load but still require environmental triggers for the disease to develop.
- Age of Onset: Typically later in life (after 65).

Familial Dementia (Familial Aggregation)

Definition: This term refers to dementia that clusters in families. It includes two sub-categories:

- 1. **Familial with a Strong Genetic Component**: This includes both the rare autosomal dominant forms caused by deterministic genes and families where there is a high load of common risk genes (e.g., multiple members with APOE-e4).
- **2. Familial due to Shared Environment/Lifestyle:** Families may share risk not through genes, but through common habits (e.g., diet, smoking), exposures (e.g., to toxins), or socioeconomic factors (e.g., access to education and healthcare) (Livingston et al., 2020).

Familial dementia accounts for 5–10% of all cases and typically involves autosomal dominant inheritance patterns.

These cases often display:

- Earlier onset (usually before age 65)
- Faster progression
- Multiple affected first-degree relatives
- Genetic mutations involving APP, PSEN1, PSEN2, MAPT, GRN, or C9 or f72

Key Takeaway: Having a family history of dementia increases one's risk, but it does not mean the disease is inevitable. Conversely, having no family history does not confer immunity, as sporadic cases are very common.

3.6 Rare Deterministic Genes in Early-Onset Familial Alzheimer's Disease

In less than 1% of all Alzheimer's cases, the disease is caused by a single, inherited mutation in one of three genes (Bateman et al., 2011). These are autosomal dominant mutations, meaning only one copy of the mutated gene, inherited from either parent, is sufficient to cause the disease. This form is known as Autosomal Dominant Alzheimer's Disease (ADAD) or Familial Alzheimer's Disease (FAD).

The Three Primary Genes:

- **1. Amyloid Precursor Protein (APP) on chromosome 21:** The APP protein is cleaved to produce amyloid-beta peptides. Mutations in APP lead to overproduction or altered cleavage of amyloid-beta, directly driving plaque formation. The fact that individuals with Down syndrome (trisomy 21) have an extra copy of the APP gene and universally develop Alzheimer's pathology by middle age strongly supports the central role of APP and amyloid.
- 2. Presenilin 1 (PSEN1) on chromosome 14: This is the most common cause of ADAD. The PSEN1 protein is a component of the gamma-secretase complex, which is one of the enzymes that cleaves APP. Mutations in PSEN1 alter the gamma-secretase activity, leading to the production of longer, more sticky forms of amyloid-beta that aggregate easily.
- **3. Presenilin 2 (PSEN2) on chromosome 1:** Similar to PSEN1, PSEN2 is part of the gamma-secretase complex. Mutations here are rarer and can sometimes result in a more variable age of onset.

Implications:

- Age of Onset: ADAD typically results in early-onset disease, often between a person's 30s and 50s (Bateman et al., 2011).
- **Genetic Testing and Counseling:** Because these are deterministic genes, genetic testing is available. However, it involves profound ethical, psychological, and social considerations and is always preceded and followed by extensive genetic counseling.
- **Research**: The study of these families has been invaluable, leading to the "amyloid cascade hypothesis" and providing cohorts for preventative clinical trials.

4. The Power of Modifiability: Introduction to Risk Factors

While our genetic makeup is fixed at conception, the story of our brain health is far from predetermined. A paradigm shift in dementia research has been the growing evidence that a substantial proportion of cases could be prevented or delayed by addressing modifiable risk factors. The landmark 2020 report from The Lancet Commission identified 12 key modifiable risk factors that, if addressed, could prevent or delay up to 40% of dementia cases worldwide (Livingston et al., 2020) (Table 5).

Table 5. Key Modifiable Risk Factors for Dementia (Lancet Commission, 2020)

Life Stage	Modifiable Risk Factor	Mechanism	Preventive Strategy
Early Life (0–20 yrs)	Low education	Reduced cognitive reserve	Promote access to quality education.
Midlife (40–65 yrs)	Hypertension, obesity, hearing loss, TBI, alcohol misuse, smoking, depression	Vascular and metabolic damage; neuroinflammation	Manage blood pressure, maintain healthy weight, use hearing aids, avoid smoking/alcohol excess, address depression.
Later Life (65+ yrs)	Social isolation, inactivity, diabetes, smoking, air pollution	Reduced cognitive stimulation; vascular damage	Maintain social engagement, physical activity, and manage diabetes.

These factors act across the entire lifespan, from childhood to late life, highlighting that it is never too early or too late to take action.

A Lifespan Approach to Risk:

- Early Life (Childhood and Adolescence): Factors like education level set the stage for cognitive reserve.
- Midlife (Ages 45-65): This is a critical window for addressing cardiovascular and metabolic health.
- Later Life (Ages 65+): Continuing healthy habits and managing sensory and social health becomes paramount.

The following sections will explore the most significant modifiable risk factors, beginning with the cornerstone of physical health: cardiovascular function.

4.1 Modifiable Risk Factor 1: Cardiovascular Health

The link between a healthy heart and a healthy brain is unequivocal (Gorelick et al., 2017). The brain is one of the most metabolically active organs, consuming 20% of the body's oxygen and nutrients supplied by blood. Conditions that damage the heart and blood vessels invariably impair this critical supply chain (Table 6).

Key Cardiovascular Risk Factors:

- Hypertension (High Blood Pressure): Chronic high pressure damages the delicate small blood vessels in the brain, leading to tiny strokes (microinfarcts), white matter lesions, and blood-brain barrier disruption. Midlife hypertension is one of the strongest risk factors for both vascular dementia and Alzheimer's disease (Livingston et al., 2020).
- Hypercholesterolemia (High Cholesterol): High levels of LDL ("bad") cholesterol can contribute to atherosclerosis (hardening of the arteries) in both heart and brain vessels, increasing the risk of stroke. Cholesterol also interacts with the APOE protein and is involved in amyloid pathology.
- **Diabetes and Insulin Resistance:** Type 2 diabetes doubles the risk of dementia (Chatterjee et al., 2016). High blood sugar causes inflammation and oxidative stress, damages blood vessels, and may lead to "Type 3 Diabetes," a proposed term for insulin resistance in the brain that impairs neuronal function and promotes amyloid accumulation.
- Atrial Fibrillation and Heart Disease: Irregular heart rhythms and other cardiac conditions can lead to the formation of blood clots that can cause strokes, directly causing vascular cognitive impairment.

Mechanisms: The pathways linking cardiovascular risk to dementia include (Gorelick et al., 2017):

- 1. Reduced Cerebral Blood Flow: Limiting delivery of oxygen and glucose.
- 2. Cerebrovascular Disease: Strokes and micro-injuries.
- 3. Neuroinflammation: Systemic inflammation from vascular disease affects the brain.
- 4. Amyloid Dysregulation: Vascular dysfunction impairs the clearance of amyloid-beta.

Managing these conditions through medication, diet, and exercise is one of the most effective strategies for preserving cognitive health.

Table 6. Cardiovascular Risk Factors and Mechanisms

Condition	Mechanism of Brain Injury	Dementia Type Associated	Key Management Approach
Hypertension	Microvascular damage, white matter lesions	Vascular & Alzheimer's	Blood pressure control (ACE inhibitors, ARBs).
Hyperlipidemia	Atherosclerosis, impaired amyloid clearance	Vascular	Statin therapy, dietary control.
Diabetes Mellitus	Insulin resistance, oxidative stress	Alzheimer's & mixed	Glycemic control, weight management.
Atrial Fibrillation	Embolic stroke, hypoperfusion	Vascular	Anticoagulation, rhythm management.

4.2 Modifiable Risk Factor 2: Physical Activity and Exercise

Regular physical activity is a powerful, evidence-based pillar of dementia prevention (Erickson et al., 2019). Its benefits are mediated through multiple direct and indirect pathways in the brain (Table 7).

Direct Neurobiological Benefits:

- Increased Cerebral Blood Flow: Exercise boosts blood flow to the brain, delivering oxygen and nutrients while removing metabolic waste.
- Neurogenesis and Brain-Derived Neurotrophic Factor (BDNF): Aerobic exercise, in particular, stimulates the production of BDNF, a protein that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses, primarily in the hippocampus—a key memory center (Erickson et al., 2019).
- **Reduction of Pathologies:** In animal models, exercise has been shown to reduce both amyloid-beta and tau pathology.
- Reduced Inflammation: Exercise has a systemic anti-inflammatory effect.

Indirect Benefits:

- Improved Cardiovascular Health: It helps control weight, blood pressure, and cholesterol.
- Improved Sleep: Regular activity promotes healthier sleep patterns, which are critical for amyloid clearance.
- Reduced Stress and Depression: Exercise is a potent modulator of stress hormones and mood.

Exercise Recommendations (World Health Organization, 2020):

- Aerobic Exercise: At least 150 minutes of moderate-intensity (e.g., brisk walking, cycling) or 75 minutes of vigorous-intensity exercise per week.
- Strength Training: Muscle-strengthening activities at least two days per week.
- Balance and Coordination: Activities like tai chi are also beneficial, especially for fall prevention in older adults.

The key message is that any movement is better than none, and benefits are seen at all ages.

Table 7. Physical Activity Recommendations (WHO, 2020)

Туре	Frequency	Examples	Cognitive Benefit
Aerobic	≥150 min/week (moderate) or 75 min (vigorous)	Walking, cycling, swimming	Improves blood flow, promotes neurogenesis.
Strength Training	≥2 days/week	Resistance bands, light weights	Improves muscle tone and metabolism.
Balance/Coordination	Regularly	Tai chi, yoga	Reduces fall risk, improves motor planning.

4.3 Modifiable Risk Factor 3: Diet and Nutrition

"What is good for the heart is good for the brain" is a guiding principle for nutritional strategies to reduce dementia risk. The brain is susceptible to oxidative stress and inflammation, both of which can be modulated by diet.

The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diet:

This hybrid of the Mediterranean and DASH (Dietary Approaches to Stop Hypertension) diets is specifically designed for brain health (Morris et al., 2015) (Table 8). It emphasizes:

Foods to Encourage:

- o Green Leafy Vegetables (e.g., spinach, kale): ≥6 servings/week.
- o Other Vegetables: ≥1 serving/day.
- o Berries (especially blueberries and strawberries): ≥2 servings/week; high in flavonoids.
- o Nuts: ≥5 servings/week; source of healthy fats and vitamin E.
- o Olive Oil as primary cooking oil.
- o Whole Grains: ≥3 servings/day.
- o Fish: ≥1 serving/week; source of omega-3 fatty acids (DHA).
- o Beans: ≥4 servings/week.
- o Poultry: ≥2 servings/week.

Foods to Limit:

- Red meat and processed meats.
- o Butter and margarine.
- o Cheese.
- o Pastries and sweets.
- o Fried or fast food.

Table 8. MIND Diet Components

Food Group	Recommended Intake	Cognitive Benefit
Green leafy vegetables	≥6 servings/week	Antioxidant and anti-inflammatory.
Berries	≥2 servings/week	Rich in flavonoids; reduces oxidative stress
Nuts	≥5 servings/week	Vitamin E and healthy fats.
Fish	≥1 serving/week	Omega-3s improve synaptic function.
Olive oil	Primary oil	Reduces vascular inflammation.
Red meat, butter, sweets	Limit	Reduce vascular burden.

Proposed Mechanisms (Morris et al., 2015):

- Antioxidant Effects: Berries and leafy greens combat oxidative stress.
- Anti-Inflammatory Effects: Omega-3s from fish and monounsaturated fats from olive oil reduce neuroinflammation.
- Vascular Health: The diet supports healthy blood pressure and cholesterol.
- Amyloid Reduction: Some studies suggest the MIND diet is associated with lower levels of amyloid plagues.

4.4 Modifiable Risk Factor 4: Cognitive and Social Engagement

A mentally and socially active life builds a "cognitive reserve" that helps the brain become more resilient to pathology (Stern, 2012). The principle of "use it or lose it" appears to hold true for neural circuits (Table 9).

Cognitive Engagement:

- **Concept:** Challenging the brain with novel and complex activities strengthens synaptic connections and promotes neuroplasticity.
- Activities: Formal education, lifelong learning, reading, playing musical instruments, learning a new language, doing puzzles, and engaging in strategic games (e.g., chess).
- Evidence: Higher levels of education and engagement in cognitively stimulating activities are consistently linked to a lower risk of dementia (Livingston et al., 2020). It is believed that a more robust neural network can better compensate for the damage caused by disease, delaying the onset of symptoms.

Social Engagement:

- Concept: Maintaining strong social networks and frequent social interaction is protective against cognitive decline.
- Activities: Having a strong social support system, participating in group activities, volunteering, maintaining friendships, and engaging in community life.
- Mechanisms (Frattiglioni, Paillard-Borg, & Winblad, 2004):
- **1. Cognitive Stimulation:** Social interaction is itself a complex cognitive task requiring attention, memory, and emotional regulation.
- 2. Stress Buffering: Social support can mitigate the harmful effects of chronic stress.
- **3. Behavioural Reinforcement:** Social networks often encourage healthy behaviours (e.g., friends to exercise with) and discourage unhealthy ones.

Loneliness and social isolation, conversely, are significant risk factors for depression, cognitive decline, and earlier mortality.

Table 9. Cognitive and Social Engagement Factors

Domain	Examples	Mechanism	Impact
Cognitive	Reading, learning, puzzles	Strengthens synaptic connections	Builds cognitive reserve.
Social	Group activities, volunteering	Reduces stress and isolation	Enhances resilience and mood.

5. Other Critical Modifiable Factors: Smoking, Alcohol, and Sleep

Smoking:

Tobacco smoking is a major risk factor for dementia (Livingston et al., 2020). The harmful effects are multifold:

- Vascular Damage: It accelerates atherosclerosis and increases the risk of stroke.
- Oxidative Stress and Inflammation: Tobacco smoke contains numerous neurotoxins and pro-inflammatory compounds.
- Direct Toxicity: Some compounds in smoke may have a direct toxic effect on neurons.

The good news is that quitting smoking, even later in life, can significantly reduce the elevated risk.

Alcohol Consumption:

The relationship between alcohol and dementia is J-shaped. Heavy drinking (>21 units per week for men, >14 for women) is detrimental, increasing the risk through neurotoxicity, vitamin B1 (thiamine) deficiency, and increased risk of stroke and liver disease (Livingston et al., 2020). However, light to moderate consumption (particularly red wine, with its polyphenols like resveratrol) has been associated in some studies with a reduced risk, likely due to beneficial cardiovascular effects. Given the risks of alcohol, it is not recommended to start drinking for health benefits, and for those who do drink, moderation is key.

Sleep:

Quality sleep is essential for brain maintenance. During deep sleep, the brain's glymphatic system—a waste-clearance system—becomes highly active, flushing out metabolic byproducts, including amyloid-beta (Xie et al., 2013) (Table 10).

- Sleep Disorders: Chronic insomnia and sleep-disordered breathing (e.g., sleep apnea) are linked to an increased risk of cognitive decline. Sleep apnea causes repeated drops in oxygen levels, damaging the hippocampus.
- Recommendation: 7-9 hours of quality sleep per night is considered a cornerstone of brain health.

Table 10. Sleep and Mental Health Factors

Factor	Mechanism	Dementia Risk Link	Intervention
Poor sleep	Impaired glymphatic clearance of amyloid	↑ Alzheimer's risk	Sleep hygiene, treat apnea.
Depression	Hippocampal atrophy, inflammation	Independent risk factor	Therapy, antidepressants.
Chronic stress	Cortisol-mediated neuronal damage	Cognitive decline	Stress management, mindfulness.

6. Environmental Influences: Air Pollution and Heavy Metals

Beyond personal lifestyle choices, the broader environment we live in can influence dementia risk. The evidence for many environmental toxins is still evolving, but several strong candidates have emerged.

Air Pollution:

Fine particulate matter (PM2.5) and other pollutants from vehicle exhaust, industrial emissions, and wildfires can enter the bloodstream and, via the nose, directly access the brain (Underwood, 2017).

Proposed Mechanisms:

- **1. Systemic Inflammation:** Pollutants trigger a body-wide inflammatory response that affects the brain.
- 2. Oxidative Stress: Particles generate reactive oxygen species that damage neurons.
- **3. Direct Entry to Brain:** Ultrafine particles can travel up the olfactory nerve directly into the brain, potentially carrying toxic metals.
- **4. Amyloid Pathology:** Animal studies show exposure to air pollution can increase amyloid plaque formation.

Heavy Metals:

- **Lead:** Childhood exposure to lead (in paint, water, or soil) has been linked to lower cognitive performance and increased risk of neurodegeneration later in life. Lead is a potent neurotoxin.
- Other Metals: The evidence for other metals like mercury and aluminuim is more controversial. While high-level exposure is neurotoxic, a definitive causal link to common forms of dementia like Alzheimer's at typical environmental levels remains unproven. Aluminium, in particular, has been the subject of much speculation but little conclusive human evidence.

Mitigating these risks involves policy-level changes (e.g., cleaner air regulations) and individual actions (e.g., using air purifiers, being aware of lead in older homes).

6. The Role of Traumatic Brain Injury (TBI)

Traumatic Brain Injury, particularly moderate to severe or repeated mild TBI (such as in contact sports), is a well-established environmental risk factor for dementia (Livingston et al., 2020).

The Link to Neurodegeneration:

- Acute Effects: TBI causes immediate damage through shearing and tearing of neuronal axons, contusions, and bleeding.
- Chronic Effects: It triggers a cascade of pathological events that can persist for years, including (Smith, Johnson, & Stewart, 2013):
 - o Amyloid Pathology: The brain may rapidly produce amyloid-beta plaques in response to injury.
 - **o Tau Pathology:** TBI is a strong driver of tau tangles. A condition known as Chronic Traumatic Encephalopathy (CTE), found in athletes and military veterans with repeated head trauma, is characterized by extensive tau pathology.
 - o Neuroinflammation: A persistent inflammatory state can be activated after TBI.
 - o Vascular Damage: Injuries can damage the brain's blood vessels.

Risk and Severity:

A single, severe TBI increases the risk of developing dementia later in life. The risk is substantially higher with repeated injuries. This has major implications for sports safety, military veterans, and fall prevention in the elderly. The use of helmets and other protective gear is a critical modifiable behaviour to mitigate this risk.

7. The Impact of Mental Health: Depression and Chronic Stress

Psychological well-being is inextricably linked to cognitive health. Chronic negative mental states can exert a tangible, damaging effect on the brain. Depression:

Late-life depression is both a potential early symptom of dementia and an independent risk factor for its development (Livingston et al., 2020).

• Mechanisms:

- o **Hippocampal Atrophy:** Depression is associated with elevated cortisol levels (a stress hormone), which can be toxic to hippocampal cells, leading to volume loss in this critical memory region.
- o **Inflammation:** Major depression is linked to a chronic, low-grade inflammatory state.
- o **Vascular Factors:** Depression is associated with worse cardiovascular health.
- o **Social Withdrawal**: It can lead to reduced cognitive and social engagement.

Chronic Stress:

The body's stress response system, the hypothalamic-pituitary-adrenal (HPA) axis, is designed for short-term threats. Chronic activation leads to dysregulation.

- **Cortisol:** Persistently high cortisol levels impair memory, reduce hippocampal volume, and increase blood pressure.
- Lifestyle Mediators: Chronic stress often leads to poor sleep, unhealthy eating, and physical inactivity, creating a cascade of risk.

Effectively managing mental health through therapy, medication, mindfulness, and social support is therefore a vital component of dementia risk reduction.

8. Sensory Health: Hearing and Vision Loss

Emerging evidence strongly suggests that addressing sensory impairments is a critical, and often overlooked, strategy for preserving cognitive function (Livingston et al., 2020).

Hearing Loss:

Age-related hearing loss is one of the top modifiable risk factors for dementia.

- Proposed Causal Pathways (Livingston et al., 2020):
 - 1. **Cognitive Load**: The brain must expend more resources to decode sounds, diverting cognitive resources away from memory and thinking processes.
 - **2. Brain Atrophy:** Lack of auditory input may lead to accelerated atrophy in auditory regions of the brain, which can spread to other areas.
 - **3. Social Isolation:** Hearing loss makes communication difficult, leading to social withdrawal and reduced cognitive stimulation.

Studies show that the use of hearing aids is associated with a reduced risk of cognitive decline, likely by counteracting these pathways.

Vision Loss:

Similar to hearing loss, impaired vision can contribute to risk through:

- Reduced Cognitive Stimulation: It limits activities like reading, puzzles, and driving.
- Social Isolation: Difficulty recognizing faces and navigating social situations can lead to withdrawal.
- **Shared Neurodegeneration:** The same vascular or neurodegenerative processes affecting the brain may also affect the eyes (e.g., retinopathy).

Regular screening for hearing and vision and the consistent use of corrective devices (hearing aids, glasses) are simple yet powerful interventions.

9. Synthesizing the Evidence: The Concept of Cognitive Reserve

How can one person have significant Alzheimer's pathology at autopsy yet show few cognitive symptoms in life, while another with minimal pathology had severe dementia? The answer lies in the concept of Cognitive Reserve (Stern, 2012).

Definition: Cognitive reserve is the brain's ability to improvise and find alternative ways of getting a job done. It is the mental resilience that allows some individuals to withstand more age-related brain changes or disease pathology before showing clinical symptoms of decline.

What Builds Cognitive Reserve?

The modifiable factors discussed throughout this chapter are the primary builders of reserve:

- High Educational and Occupational Attainment
- Lifelong Engagement in Cognitively Stimulating Hobbies
- Rich Social Networks
- Physical Activity

Mechanisms: Reserve is not a physical entity but a functional characteristic, believed to be underpinned by (Stern, 2012):

- 1. Neural Reserve: More efficient or robust brain networks in healthy individuals.
- 2. **Neural Compensation:** The ability to recruit alternative brain networks or use different cognitive strategies to compensate for damage.

This concept powerfully reframes the goal of risk reduction: it is not necessarily to prevent all pathology, but to build a brain that is resilient enough to cope with it, thereby delaying or preventing the onset of disabling symptoms.

10. A Lifespan Model of Risk and Resilience

Dementia risk is not static; it accumulates and can be modified across the entire human lifespan. The following model illustrates how risk factors (in red) and protective/resilience factors (in green) interact from childhood to old age, as conceptualized by the Lancet Commission (Livingston et al., 2020).

• Early Life (0-20 years):

- o **Risk:** Low childhood education, childhood lead exposure.
- o **Resilience:** High-quality education, cognitive stimulation, good nutrition.
- o This period builds the foundational brain structure and initial cognitive reserve.

Midlife (40-65 years):

- o **Risk:** Hypertension, obesity, hearing loss, TBI, alcohol misuse, smoking, depression.
- o **Resilience:** Managing cardiovascular health, staying physically and cognitively active, healthy diet, strong social ties.
- o This is a critical period for intervention, as addressing these risks can have a massive impact on late -life outcomes.

Later Life (65+ years):

- o **Risk:** Social isolation, physical inactivity, diabetes, depression, smoking, air pollution.
- o **Resilience:** Continued cognitive engagement, managing sensory loss, treating depression, maintaining social connections.
- o It is never too late; lifestyle changes in later life still confer significant benefit.

This model underscores that prevention is a lifelong endeavour.

11. Clinical Implications and Public Health Perspective

The knowledge of genetic and modifiable risk factors has profound implications for clinical practice and public health policy.

Clinical Implications:

- **Genetic Counseling:** For individuals with a strong family history of early-onset dementia, genetic counseling is essential to discuss the pros and cons of testing for deterministic genes. For APOE, routine testing is not recommended for risk assessment in asymptomatic individuals due to its limited predictive value and potential for psychological harm (Goldman et al., 2011).
- Risk Assessment and Patient Counseling: Clinicians should move beyond family history and actively assess modifiable risk factors (e.g., blood pressure, hearing, physical activity levels, diet, social engagement) during patient visits.
- **Personalized Prevention Plans:** Healthcare providers can work with patients to create tailored plans focusing on their most impactful modifiable risks (e.g., "Let's focus on getting your blood pressure under control and increasing your weekly walks").

Public Health Perspective:

Addressing dementia risk requires a population-level approach (Livingston et al., 2020).

- Policy Initiatives: Governments can promote brain health through policies that improve air quality, fund public
 education campaigns, ensure access to early childhood education, and create age-friendly communities that
 promote social and physical activity.
- **Economic Impact:** A small reduction in the overall rate of dementia through preventative strategies would have an enormous positive economic impact by reducing the future burden of care.
- **Health Equity:** Many risk factors disproportionately affect socioeconomically disadvantaged populations. Public health efforts must focus on reducing these disparities to ensure equitable brain health for all.

12. Conclusion and Key Takeaways

This chapter has explored the complex tapestry of factors that influence an individual's risk of developing dementia. The key takeaways are:

- 1. Genetics Sets the Stage, But Doesn't Write the Script: While deterministic genes cause a small percentage of dementia cases (Bateman et al., 2011), for the vast majority, genetic risk (e.g., APOE-e4) represents a predisposition that interacts with lifestyle and environment.
- **2. Familial vs. Sporadic is a Spectrum:** Family history increases risk, but most dementia is sporadic, arising from a combination of common genetic variants and modifiable factors.
- **Modifiable Risk Factors are Paramount:** Up to 40% of dementia cases could be prevented by addressing 12 key modifiable factors across the lifespan (Livingston et al., 2020). The most significant include:
- o Less education in early life.
- o Midlife hypertension, obesity, hearing loss, and excessive alcohol use.
- o Later life smoking, depression, physical inactivity, social isolation, diabetes, and air pollution.
- 4. The Brain-Body Connection is Inseparable: Cardiovascular health is brain health (Gorelick et al., 2017). Physical activity (Erickson et al., 2019), a heart-healthy diet (like the MIND diet) (Morris et al., 2015), and good sleep are foundational.
- **5. "Use It or Lose It" is Scientifically Valid:** A mentally, socially, and cognitively engaged life builds cognitive reserve (Stern, 2012), making the brain more resilient to pathology.
- **6. Prevention is a Lifelong Journey:** Interventions at any stage of life can be beneficial, but midlife represents a particularly critical window of opportunity.

In conclusion, the fear of dementia, often fueled by a sense of genetic determinism, can be replaced with a sense of empowerment. By understanding and actively managing our modifiable risk factors, we can all take meaningful steps toward preserving our cognitive health for years to come.

References

Bateman, R. J., Aisen, P. S., De Strooper, B., Fox, N. C., Lemere, C. A., Ringman, J. M., ... & Xiong, C. (2011). Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimer's Research & Therapy, 3(1), 1.

Chatterjee, S., Peters, S. A., Woodward, M., Mejia Arango, S., Batty, G. D., Beckett, N., ... & Huxley, R. R. (2016). Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care, 39(2), 300-307.

Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., ... & Physical Activity Guidelines Advisory Committee. (2019). Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Medicine and Science in Sports and Exercise, 51(6), 1242.

Frattiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343-353.

Goldman, J. S., Hahn, S. E., Catania, J. W., LaRusse-Eckert, S., Butson, M. B., Rumbaugh, M., ... & Bird, T. (2011). Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genetics in Medicine, 13(6), 597-605.

Gorelick, P. B., Furie, K. L., Iadecola, C., Smith, E. E., Waddy, S. P., Lloyd-Jones, D. M., ... & American Heart Association/American Stroke Association. (2017). Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association. Stroke, 48(10), e284-e303.

Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., ... & Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/PERADES). (2019). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates $A\beta$, tau, immunity and lipid processing. Nature Genetics, 51(3), 414-430.

Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106-118. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., ... & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413-446.

Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Barnes, L. L., Bennett, D. A., & Aggarwal, N. T. (2015). MIND diet slows cognitive decline with aging. Alzheimer's & Dementia, 11(9), 1015-1022.

National Institute on Aging. (2023). Alzheimer's Disease Genetics Fact Sheet. U.S. Department of Health and Human Services. Retrieved from https://www.nia.nih.gov/health/alzheimers-disease-genetics-fact-sheet

Raz, L., Knoefel, J., & Bhaskar, K. (2016). The neuropathology and cerebrovascular mechanisms of dementia. Journal of Cerebral Blood Flow & Metabolism, 36(1), 172-186.

Smith, D. H., Johnson, V. E., & Stewart, W. (2013). Chronic neuropathologies of single and repetitive TBI: substrates of dementia?. Nature Reviews Neurology, 9(4), 211-221. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006-1012.

Strang, K. H., Golde, T. E., & Giasson, B. I. (2019). MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Laboratory Investigation, 99(7), 912-928.

Ulland, T. K., & Colonna, M. (2018). TREM2 — a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 14(11), 667-675.

Underwood, E. (2017). The polluted brain. Science, 355(6323), 342-345.

World Health Organization. (2020). Guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization.

Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., ... & Nedergaard, M. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373-377.