Cognitive Determinants of Physical Activity Intention among Iranian Nurses: An Application of Integrative Model of Behavior Prediction

Arsalan Ghaderi (1)
Firoozeh Mostafavi (2)
Behzad Mahaki (3)
Abdorrahim Afkhamzadeh (4)
Yadolah Zarezadeh (5)
Erfan Sadeghi (6)

(1) Student Research center, school of health, Isfahan University of medical science, Isfahan, Iran
(2) Department of Health Education and Promotion, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
(3) Department of Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
(4) Department of Community Medicine, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
(5) Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
(6) Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

Corresponding Author:
Firoozeh Mostafavi,
Department of Health Education and Promotion, School of Health, Isfahan University of Medical Sciences, Isfahan, IR Iran.
Tel: +98-3137922710,
Email: f_mostafavi@yahoo.com

Abstract

Introduction: Sedentary lifestyle and physical inactivity is recognized as a risk factor for various diseases. Nurses have a special place among healthcare team members, and their numerous roles require nurses to have good physical fitness. The present study aimed to determine cognitive factors related to doing regular physical activity among a sample of Iranian nurses based on the integrative model of behavior prediction (IMBP).

Methods: This cross-sectional study was conducted in 2016 on a sample of 418 nurses who were working in medical teaching hospitals in Isfahan and Sanandaj in Iran. Participants were randomly selected proportionally to staff size among different hospitals. A structured questionnaire was applied for collecting data and data were analyzed by SPSS version 16 using correlations, linear and logistic regression statistical tests.

Results: Mean age of the subjects was 33.1 years (range, 21-53 years). 66.6%, 25.4%, and 8% had low, moderate, and severe physical activity, respectively. The best predictors for doing regular physical activity were skills with OR of 1.203 [95% CI: 1.093, 1.324], and attitude with OR of 1.023 [95% CI: 1.023, 1.034]. The IMBP variable, accounted for 34% of the variation in the outcome measure of the intention to do physical activity.

Conclusion: Based on our result, it seems that designing and implementation of educational programs to increase attitude and skills regarding doing physical activity may be useful in the promotion of physical activity.

Key words: Cognitive Determinants, Physical Activity, Intention, Nurses, IMBP

Please cite this article as: Please cite this article as: Ghaderi A. et al. Cognitive Determinants of Physical Activity Intention among Iranian Nurses: An Application of Integrative Model of Behavior Prediction. World Family Medicine. 2017; 15(9):154-158. DOI: 10.5742/MEWFM.2017.93118
Introduction

Nowadays one of the health problems is sedentary lifestyle. In this regard, studies have shown that more than 80 percent of people do not have enough regular physical activity (1). The prevalence of inactivity in urban and rural areas of Iran, with an emphasis on leisure physical activities between men and women in the age group of 15-64 years, was 76.3% and 55.8% respectively, with the overall percentage of 67.6 percent (2). Sedentary lifestyle and physical inactivity is recognized as a risk factor for various diseases. It is also raised as one of the main modifiable risk factors for cardiovascular diseases and plays an important role in the development of other diseases (3). Researchers have shown that adequate physical activity has a beneficial effect on blood pressure, obesity and serum lipids. So that, regular exercise is proven to reduce total cholesterol, increase high-density lipoprotein, reduce low-density lipoprotein, and improve the general health of the body (4). As a significant health promoting behavior, regular physical activity can prevent or delay the occurrence of chronic diseases and early mortality (5). Nurses have a special place among healthcare team members, and their numerous roles require nurses to have good physical activity (6). Nurses cannot meet the needs of patients unless they pay great attention to the ways of promoting their own lives and health (7). Therefore, paying more attention to their health condition and determining risk factors of nurses, is very important (8). Studies have shown that the most effective programs are theory-based, rooted in social psychology (9, 10). Previous research has also shown that psychological studies and social psychology theories play an important role in creating programs that impact on health promotion. (11-17). The theories that examine the role of these factors in predicting behavior include the theory of rational action and the theory of planned behavior (10). By developing the theory of rational action and the theory of planned behavior, Fishbein has proposed an integrative model of behavior prediction in which several factors such as attitude, subjective norms, self-efficacy or perceived behavior control, behavioral intention, skill, and environmental constraints have been considered effective (18). This research aims to find cognitive determinants of physical activity intention among Iranian nurses based on application of integrative model of behavior prediction.

Methods

Participants and procedure

This cross sectional study was a part of a project conducted among Iranian nurses during 2016, with the goal of providing knowledge for the promotion of physical activity. The sample size was calculated at 95% significant level according to the results of a study by Tofighi et al (19) which reported that about half of Iranian nurses were lower than the Average levels of physical activity and considering the 20% attrition rate (rate of drop-out among participants), a sample of 418 was estimated. The study population included all nurses working in teaching hospitals in Isfahan and Sanandaj. In this study, a major teaching hospital in the aforementioned cities was randomly selected and then specifically-designed questionnaires were distributed among nurses who volunteered for this research and the required information was collected. It is worth mentioning that all the participants were informed about the project and confidentiality of the information, as well as the purpose of the project, and entered the study with consent. All questionnaires were anonymous and incomplete questionnaires were excluded from the study. The study protocol was approved by the institutional review board and ethics committee of the Isfahan University of Medical Sciences, Isfahan, Iran.

Measures

The participants were instructed about how to fill out the designed self-report questionnaire before gathering the required information. The questionnaire used here included three sections including demographic information questions, integrative model of behavioral prediction constructs, and the short form of the international physical activity questionnaire (IPAQ).

A: Demographic Characteristics

Background data inquired about included age, gender, marital status, education, weight, height, waist circumference, record of membership in the sports club, duration of membership in the sports club, current sport club membership status, and job history.

B: IMBP Variables

IMBP items were designed based on standard questionnaires applied to physical activity (20, 21). Before data collection, its reliability was evaluated using the alpha coefficient method through a preliminary study on 30 cases in the control group. This questionnaire consisted of the constructs of attitude (10 questions), subjective norms (5 questions), and self-efficacy (18 questions - Bandura’s standard physical activity self-efficacy questionnaire (22), environmental constraints (10 questions), skills (4 questions) and behavioral intention (4 questions). In order to measure the score of each construct, the mean of the total score of that construct was considered. Furthermore, at least 10 faculty members and qualified individuals were consulted to determine the validity of the questionnaire and face and content validity were determined. In order to determine content validity, CVR and CVI were calculated according to the opinion of experts.

C: Short form of the International Physical Activity Questionnaire (IPAQ)

This questionnaire asks questions about the amount of intense and moderate physical activity, walking, and the average duration of sitting over the last week (7 days). Questionnaire score is reported according to the IPAQ protocol. The total physical activity of an individual per week is measured in minute/week – MET format. The term MET refers to the expression metabolic equivalent. MET is a unit used to estimate the metabolic cost of physical activity. One MET is approximately equal to the amount of resting energy expenditure for an individual (23).
physical activity can be classified with multiples of resting energy expenditure.

The questionnaire includes questions about the physical activity of participants. This section can be finally used to classify physical activity into three categories: Weak or low, moderate, and severe. This questionnaire has been used by the World Health Organization to evaluate the level of physical activity. It has also been used in several domestic studies and its validity and reliability have been confirmed. The intensity of energy expenditure for all of the activities during the past 7 days was calculated according to IPAQ instructions; if the total calculated energy during the week is 600 to 3000 Met/Cal/Week, the intensity of the activity of the relevant questionnaire is moderate and if more than 3000 Met/Cal/Week, the intensity of the activity of the relevant questionnaire is severe. Moreover, if the amount of consumed energy is less than 600, the person is classified as: with no regular physical activity (24).

Statistical Analysis
Data were analyzed by SPSS version 16 using appropriate statistical tests including bivariate correlations, linear and logistic regression statistical tests at 95% significant level.

Results
Mean age of the subjects was 33.1 years (range, 21-53 years). Among the participants, 73.2% were female, respectively, among whom 88 were single, 268 married, and 63 did not answer the marital status question. Regarding education, 90.9% had bachelor’s degrees and 9.1% had master’s degree. The results of the present study showed that 66.6%, 25.4%, and 8% had low, moderate, and severe physical activity, respectively.

Table 1 shows the Zero-order correlations. Statistical significance was calculated at 0.01 and 0.05. The results showed intention was correlated with the attitude (r=0.159), subjective norms (r=0.222), self-efficacy (r=0.198), skills (r=0.553), and environmental constraints (r=0.128). Environmental constraints was significantly correlated with self-efficacy (r=0.130), and skills (r=0.196). In addition, skills was correlated with the attitude (r=0.143), subjective norms (r=0.218), and self-efficacy (r=0.147). Furthermore, self-efficacy was significantly correlated with attitude (r=0.133). Finally, subjective norms was significantly correlated with attitude (r=0.136).

Table 1: Correlation between different components of IMBP

<table>
<thead>
<tr>
<th>Component</th>
<th>Mean (SD)</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1. Attitude</td>
<td>58.86 (11.23)</td>
<td>1</td>
<td></td>
<td>X2</td>
<td>X3</td>
<td>X4</td>
<td>X5</td>
</tr>
<tr>
<td>X2. Subjective norms</td>
<td>15.18 (3.75)</td>
<td>0.136**</td>
<td>1</td>
<td>X1</td>
<td>X4</td>
<td>X5</td>
<td>X6</td>
</tr>
<tr>
<td>X3. Self-efficacy</td>
<td>84.52 (27.68)</td>
<td>0.133*</td>
<td>0.082</td>
<td>1</td>
<td>X5</td>
<td>X6</td>
<td>X7</td>
</tr>
<tr>
<td>X4. Skills</td>
<td>12.07 (2.95)</td>
<td>0.143**</td>
<td>0.218**</td>
<td>0.147**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5. Environmental constraints</td>
<td>27.41 (5.48)</td>
<td>0.048</td>
<td>0.101</td>
<td>0.130*</td>
<td>0.196*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X6. Intention</td>
<td>12.01 (2.90)</td>
<td>0.159**</td>
<td>0.222**</td>
<td>0.198**</td>
<td>0.553**</td>
<td>0.128*</td>
<td>1</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Linear regression analysis was performed to explain the variation of physical activity intention. As can be seen in Table 2, Collectively, IMBP variables accounted for 34% of the variation of physical activity intention.

Table 2: Predictors of the intention to physical activity

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>B</th>
<th>T</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Model, Step 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>0.021</td>
<td>0.011</td>
<td>0.086</td>
<td>1.503</td>
<td>0.068</td>
</tr>
<tr>
<td>Skills</td>
<td>0.530</td>
<td>0.043</td>
<td>0.575</td>
<td>12.186</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Adjusted R squared = 0.34, F: 80.190, and P <0.001

However, in Table 3, by dividing physical activity behavior into two groups of people without physical activity (people with poor physical activity) and those with physical activity (people with moderate and severe physical activity) and using logistic regression, it was observed that the constructs of attitude and skill were more important regarding physical activity behavior.
activity among Iranian nurses. Attitude is defined as a person’s beliefs about the results of a behavior and his/her evaluation of it (10). Therefore, it seems that training courses should focus on improving positive attitude on physical activity such as improving body fitness and stress management.

This study had a few limitations. The main limitation of this study was self-reporting, which may have led to bias.

Conclusion

Comprehensive preventative health education programs need to emphasize on psychological factors that mediate and predict health-related behaviors. Based on our results, it seems that designing and implementation of educational programs to increase attitude and skills regarding doing physical activity may be usefulness of the results in order to promote physical activity.

Acknowledgments

This article is a part of the Ph.D. dissertation of health education and health promotion supported by Isfahan University of Medical Sciences. We would like to thank Deputy of Research of Isfahan University of Medical Sciences for financial support, we would like to thank all of the nurses who participated in this project.

References

Table 3: Multiple logistic regression analysis for IMBP components related to physical activity

<table>
<thead>
<tr>
<th>Variables</th>
<th>Odds Ratio</th>
<th>95.0% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Model, Step 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude</td>
<td>1.023</td>
<td>1.013</td>
<td>1.034</td>
</tr>
<tr>
<td>Skills</td>
<td>1.203</td>
<td>1.093</td>
<td>1.324</td>
</tr>
</tbody>
</table>