Sulfonylureas and Mortality Risk

Omer Farooq Sheikh

Correspondence:
Dr. Omer Farooq Sheikh, MBBS, MRCGP, DFSRH
Family Medicine, Manchester, United Kingdom
Email: oommer_f@hotmail.com

Received: October 2020; Accepted November 2020; Published: December 1, 2020.
Citation: Omer Farooq Sheikh. Sulfonylureas and Mortality Risk. World Family Medicine. 2020; 18(12): 237-241
DOI: 10.5742/MEWFM.2020.93935

Abstract

Sulfonylureas are a group of anti-diabetic medications, commonly used in the management of Type 2 diabetes mellitus (T2DM). Sulfonylureas were first discovered in 1942 when Marcel Janbon found that some sulfonamides lowered blood sugar levels in experimental animals. Carbutamide was the first SU synthesised and used in the management of T2DM but was withdrawn subsequently due to its bone marrow toxicity. Since the 1960s, several sulfonylureas have been made available and are classified into first and second generations varying in their pharmacodynamic and pharmacokinetic properties (Figure-1) (1).

First generation SU can cause more hypoglycaemia and are not prescribed as frequently nowadays. The second generation SU have replaced the first generation in clinical use as these can be used in smaller doses and have more potency and safety as compared to the first generation SU. Also, second generation SU are usually preferred when there is poor kidney function (2)(3). The first generation group have longer half-lives, more risk of hypoglycemia and more drug interactions as compared to the second generation group (4).

Sulfonylureas act by increasing the release of insulin from Pancreas and are only effective when there is residual pancreatic β-cells function and this is the reason for their effectiveness in T2DM rather than Type 1 diabetes. SU act by blocking the K-ATP channels in pancreatic β-cells, causing reduced K+ permeability and increasing intracellular depolarisation. This causes opening of voltage dependent Ca+ channels causing calcium influx in pancreatic β-cells, triggering exocytosis of preformed Insulin granules within pancreatic β-cells (Figure-2) (1) (5).

Although Sulfonylureas are commonly used in the management of T2DM worldwide, they do carry potential side effects which include risk of hypoglycemia, weight gain and allergic reactions during the first 6 to 8 weeks of treatment (6). This literature review has looked at the effects of SU in terms of cardiovascular mortality, stroke and risk of death.
### Various generations of sulfonylureas

<table>
<thead>
<tr>
<th>Molecules</th>
<th>Gen.</th>
<th>Dose [mg]</th>
<th>Duration of action T1/2</th>
<th>Activity of metabolites T1/2</th>
<th>Elimination</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolbutamide</td>
<td>I</td>
<td>500–2000</td>
<td>Short 4.5 to 6.5 h</td>
<td>Inactive</td>
<td>Urine ≈ 100%</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>Glibenclamide</td>
<td>II</td>
<td>2.5–15</td>
<td>Intermediate to long 5 to 7 h</td>
<td>Active 10 h</td>
<td>Bile ≈ 50%</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>Glimepiride</td>
<td>II</td>
<td>1–6</td>
<td>Intermediate 5 to 8 h</td>
<td>Active 3 to 6 h</td>
<td>Urine ≈ 80%</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>Glipizide</td>
<td>II</td>
<td>2.5–20</td>
<td>Short to intermediate 2 to 4 h</td>
<td>Inactive</td>
<td>Urine ≈ 70%</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>Gliclazide</td>
<td>II</td>
<td>40–320</td>
<td>Intermediate 10 h</td>
<td>Inactive</td>
<td>Urine ≈ 65%</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>Glicludone</td>
<td>II</td>
<td>15–180</td>
<td>Short to intermediate 3 to 4 h</td>
<td>Inactive</td>
<td>Bile ≈ 95%</td>
<td><img src="image" alt="Structure" /></td>
</tr>
</tbody>
</table>

*Short duration of activity means < 12 h, intermediate 12–24 h, long over 24 h.*

Figure 1 – Taken from Sola D et al – Various generations of Sulfonylureas and their properties (1)
It is well established that T2DM itself is associated with various complications including increased risk of cardiovascular mortality as well as morbidity. Apart from this risk associated with T2DM, there is an increased interest if certain antidiabetic medications can influence the cardiovascular risks and outcomes. As sulfonylureas have been the second most commonly used antidiabetic medications after metformin, there have been increased concerns around their cardiovascular safety profile (7). The University Group Diabetes Program (UGDP) conducted a long-term prospective trial, evaluating the effects of Tolbutamide, a first generation SU in prolonging patients’ life. The study showed that the Tolbutamide treated group had a higher risk of cardiovascular mortality and all-cause mortality than any of the other treatment groups (8).

Douroš et al’s population-based cohort study looked at patients with T2DM who were already on metformin and were either switched to SU or had SU added as second line treatment. The study looked at if there was an increased risk of ischemic stroke, myocardial infarction, cardiovascular death and all cause mortality with SU use. The study looked at patients with T2DM who started metformin between 1998 to 2013. After a mean follow up of 1.1 years, SU use was associated with an increased risk of myocardial infarction (incidence 7.8 vs 6.2 per 1000 patients), increased all cause mortality (27.3 vs 21.5), increased risk of ischemic stroke (6.7 vs 5.5) and increased cardiovascular deaths (9.4 vs 8.1) (9).

A systematic review of 31 published observational studies looked at the risk of acute myocardial infarction (AMI) with use of sulfonylureas, metformin and glitazones use in T2DM patients. Sulfonylurea use increased AMI risk
by 24% when compared to metformin. The relative risk of AMI for sulfonylureas vs metformin was 1.24 (CI 1.14-1.34) (10). Azoulay et al (2017) described 6 observational studies with no major biases that assessed the cardiovascular events and all-cause mortality with sulfonylurea vs metformin use and looked at major adverse cardiovascular events (MACE) and myocardial infarction. A summary of all 6 observational studies is given as under showing relative risks (7).

A meta-analysis of 115 selected trials with a duration of 6 months, compared sulfonylureas with other oral anti-diabetic medications. From 115 selected trials, 62 trials reported information on major cardiovascular events and 30 reported one event at least. In T2DM, SU use was associated with increased risk of stroke and increased mortality (11). Garratt et al (1999) looked at the impact of SU on outcomes in diabetic patients undergoing direct coronary angioplasty after acute myocardial infarction. The trial looked at 67 diabetic patients taking oral SU and 118 patients not on SU. The results showed that the hospital mortality was significantly higher among the SU treated group vs those not on SU (24% vs 11%). The study showed sulfonylurea usage was associated with a higher risk of in hospital mortality among diabetic patients having coronary angioplasty after myocardial infarction (12).

Discussion

Sulfonylureas have been used as second line anti-diabetic medications in the treatment of T2DM for a long time. Despite strong recommendations, in many instances SU are also used as first line anti-diabetic medications where metformin is not appropriate to use (13). As per the previous American Diabetes Association (ADA) and European Association for the study of diabetes (EASD) published guidelines, SU were recommended as second line agents in the management of T2DM after metformin and have been widely used as anti-diabetic medication worldwide (14). SU represent an important class of drug in patients who do not achieve ideal glucose control on metformin therapy alone. SU are inexpensive and per dose cost is much lower than the newer anti diabetic medications including Sodium glucose co-transporters 2 inhibitors (SGLT-2i).

Recently, a lot of evidence has emphasized that SU are associated with increased risk of cardiovascular disease, risk of stroke and overall risk of mortality. Many clinical trials and observational studies have shown similar results as discussed in literature review.

A large retrospective cohort study looked at risk of cardiovascular death and risk of heart failure among 253,690 patients started on SU vs metformin from 2001 to 2011. There was an increase in cardiovascular risk in the SU group compared to metformin initiators, hazards ratio 1.21 (CI 1.13 – 1.30) (15). A population-based cohort study of adults ≥ 35 years of age with T2DM between 2004 to 2014, looked at MACE with SU use within different ethnic groups. With a total number of 208,870 patients, 13,755 were South Asians, 172,244 were Canadians and 22,871 were Chinese population; the MACE and mortality were higher in the South Asian and Chinese population (16).

Similar results have been seen with different studies as mentioned in the literature review above. In general SU use is associated with increased risk of ischemic stroke, myocardial infarction, risk of overall mortality in patients with T2DM who are already at increased risk of these complications given their diabetes (7) (9)(12).
Conclusion

Sulfonylureas have been in use for decades as second line medications in management of T2DM. Although they are quite effective medicines, their use has been associated with more risk of mortality and deaths in terms of cardiovascular disease and stroke. Their use should be limited as newer antidiabetic medication groups now can be used and are recommended in the management of T2DM. Metformin still remains the drug of choice in T2DM and for further glycaemic control newer medicines are a better option.

References